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Slant Helices, Darboux Helices and
Similar Curves in Dual Space D3

Burak Şahiner and Mehmet Önder

Abstract. In this paper, we give definitions and characterizations of
slant helices, normalized Darboux helices and similar curves in dual
space D3. First, we define dual slant helices and dual normalized Dar-
boux helices and show that dual slant helices are also dual normalized
Darboux helices. Then, we introduce the concept of dual similar curves
and obtain that the family of dual slant helices forms a family of dual
similar curves.

1. Introduction

Helix is one of the most interesting curves in science and nature. We can
encounter helices in biology, fractal geometry, computer aided design, com-
puter graphics, etc [1]. In differential geometry, a general helix is defined
by the property that the tangent line of the curve makes a constant angle
with a fixed straight line [14]. In 1802, Lancret stated that “a curve is a
general helix if and only if the ratio of curvature to torsion is constant” [14].
There are many papers about helices and some of them include different
types of helices and their properties. Barros proved the Lancret theorem for
general helices in a space form by using killing vector fields along curves [2].
Izumiya and Takeuchi defined slant helices and conical geodesic curves [8].
Kula and Yaylı obtained that the indicatrices of a slant helix are spherical
helices [9]. Moreover, they showed that a curve of constant precession is a
slant helix. Kula et. al. investigated the relationships between slant helices
and general helices in R3 [10]. They obtained differential equations which
are characterizations of a slant helix. Lee, Choi and Jin studied dual slant
helix and Mannheim partner curves in the dual space D3 [11]. Zıplar, Şenol
and Yaylı introduced Darboux helices in R3 and gave the relations between
Darboux helices and slant helices [18].

On the other hand, in local differential geometry, associated curves such
as Bertrand curves, Mannheim curves and involute-evolute curves are very
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fascinating research area. Recently, El-Sabbagh and Ali added a new one to
these associated curves [6]. They defined a new family of curves and called a
family of similar curves with variable transformation. Also, they introduced
relationships between some special curves and similar curves.

This study consists of two original sections, Sections 3 and 4. In Section
3, the definitions and characterizations of slant helices and Darboux helices
are introduced in dual space D3. It is shown that dual slant helices are also
dual Darboux helices. In Section 4, dual similar curves are defined in D3

and it is obtained that the family of dual slant helices and of course in a
special case dual Darboux helices forms a family of dual similar curves.

2. Preliminaries

A dual number, as introduced by W. Clifford, can be defined as an ordered
pair of real numbers (a, a∗) where a is called the real part and a∗ is called the
dual part of the dual number. If both parts are nonzero, the dual number is
said to be proper; if the real part is zero, it is called a pure dual number; and
if the dual part is zero, it reduces to a real number. Dual numbers may be
formally expressed as ā = a+εa∗ where ε is the dual unit which is subjected
to the following rules [15]:

ε 6= 0, 0ε = ε0 = 0, 1ε = ε1 = ε, ε2 = 0.

We denote the set of dual numbers by D, i.e.,

D =
{
ā = a+ εa∗ : a, a∗ ∈ R, ε2 = 0

}
.

Two inner operations and equality on D are defined as follows [3, 7, 13]:
(i) Addition : (a+ εa∗) + (b+ εb∗) = (a+ b) + ε(a∗ + b∗)
(ii) Multiplication : (a+ εa∗) · (b+ εb∗) = ab+ ε(ab∗ + a∗b)
(iii) Equality : a+ εa∗ = b+ εb∗ if and only if a = b, a∗ = b∗.
Since division by pure dual numbers is not defined, the set D of dual

numbers with the above operations is a commutative ring, not a field.
A dual number ā = a + εa∗ divided by a dual number b̄ = b + εb∗, with

b 6= 0, can be defined as

ā

b̄
=
a

b
+ ε

a∗b− ab∗

b2
,

([3, 4]). We can define the function of a dual number f(ā) by expanding it
formally in a Maclaurin series with ε as variable. Since εn = 0 for n > 1, we
obtain

f(ā) = f(a+ εa∗) = f(a) + εa∗f ′(a),

where f ′(a) is derivative of f(a) with respect to a [5].
In analogy with dual numbers, a dual vector referred to an arbitrarily

chosen origin can be defined as an ordered pair of vectors (a, a∗), where
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a, a∗ ∈ R3 [16]. Also dual vectors can be expressed as ã= a+εa∗, where
a, a∗ ∈ R3 and ε2 = 0. We denote the set of dual vectors by D3, i.e.,

D3 = { ã = (ā1, ā2, ā3) : āi ∈ D, i = 1, 2, 3 } .
D3 is a module over the ring D and it is called dual space. For any dual

vectors ã= a+εa∗ and b̃= b+εb∗ in D3, the scalar product and the vector
product are defined by〈

ã, b̃
〉

= 〈a, b〉+ ε (〈a, b∗〉+ 〈a∗, b〉)

and
ã × b̃ = a × b + ε (a × b∗ + a∗ × b) ,

respectively [4, 7].
The norm of a dual vector ã is given by

‖ã‖ = ‖a‖+ ε
〈a, a∗〉
‖a‖

.

(See [7]). A dual vector ã with norm 1 + ε0 is called dual unit vector. The
set of dual unit vectors is denoted by

S̃2 =
{
ã = (ā1, ā2, ā3) ∈ D3 : 〈ã, ã〉 = (1, 0)

}
and called dual unit sphere [3, 7].

A dual angle, subtended by two oriented lines in space as introduced by
Study in 1903, is defined as θ̄ = θ+ ε θ∗, where θ is the projected angle and
θ∗ is the shortest distance between the two lines [13].
α̃(t) = α(t) + εα∗(t) is a curve in dual space D3 and is called dual

space curve or curve in dual space, where α(t) = (α1(t), α2(t), α3(t)) and
α∗(t) = (α∗1(t), α∗2(t), α∗3(t)) are real valued curves in the real space R3. If
the functions αi(t) and α∗i (t), (1 ≤ i ≤ 3) are differentiable then the dual
space curve

α̃ : I ⊂ R→ D3

t→ α̃(t) = (α1(t) + εα∗1(t), α2(t) + εα∗2(t), α3(t) + εα∗3(t))
= α(t) + εα∗(t)

is differentiable in D3. The real part α(t) of the dual space curve α̃ = α̃(t)
is called indicatrix. The dual arc-length of the dual space curve α̃(t) from
t1 to t is defined by

(1) s̄ =

∫ t

t1

∥∥α̃′(t)∥∥ d t =

∫ t

t1

∥∥~α′(t)∥∥ d t+ ε

∫ t

t1

〈
T , α∗

′
(t)
〉

d t = s+ εs∗,

where T is unit tangent vector of the indicatrix α(t) [12, 17].
Let α̃(s̄) be a dual space curve with dual arc length parameter s̄. Dual

unit tangent vector of α̃ is defined by

(2) T̃ =
d α̃

d s̄
.
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Differentiating T̃ with respect to dual arc length parameter s̄ we have

(3) T̃ ′ =
d T̃

d s̄
=

d2 α̃

d s̄2
= κ̄Ñ ,

where κ̄ = κ̄(s̄) is called dual curvature. We restrict that κ̄(s̄) is never pure
dual number. The dual unit vector Ñ = (1/κ̄)T̃ ′ is called dual unit principal
normal vector of α̃. The dual unit vector B̃ defined by B̃ = T̃ × Ñ is called
dual unit binormal vector of α̃. The dual frame

{
T̃ (s̄), Ñ (s̄), B̃(s̄)

}
is called

moving dual Frenet frame along the dual space curve α̃(s̄) in D3. For the
curve α̃, the dual Frenet derivative formulae can be given in matrix form as

(4)
d

d s̄

 T̃

Ñ

B̃

 =

 0 κ̄ 0
−κ̄ 0 τ̄
0 −τ̄ 0

 T̃

Ñ

B̃

 ,
where τ̄ = τ̄(s) is called the dual torsion of α̃ [17]. Then the dual Darboux
vector of α̃(s̄) is defined by W̃ = τ̄ T̃+κ̄B̃ which gives the derivative formulae
(4) as follows

d T̃

d s̄
= W̃ × T̃ ,

d Ñ

d s̄
= W̃ × Ñ ,

d B̃

d s̄
= W̃ × B̃ .

The unit dual Darboux vector of α̃(s̄) is defined by W̃0 =
τ̄ T̃ + κ̄B̃√
τ̄2 + κ̄2

.

Now we give the following theorem which we will use in the following
sections.

Theorem 2.1. Let α̃(s̄) be a dual curve parametrized by dual arclength s̄.
Suppose α̃ = α̃(θ̄) is another parametric representation of this dual curve by
the parameter θ̄ =

∫
κ̄(s̄) d s̄. Then the dual unit tangent vector T̃ satisfies

the following differential equation:

(5)
(

1

f̄(θ̄)
T̃ ′′(θ̄)

)′
+

(
1 + f̄2(θ̄)

f̄(θ̄)

)
T̃ ′(θ̄)− f̄ ′(θ̄)

f̄2(θ̄)
T̃ (θ̄) = 0

where f̄(θ̄) =
τ̄(θ̄)

κ̄(θ̄)
and prime shows the derivative with respect to θ̄.

Proof. Let α̃(s̄) be a unit speed dual curve. We can write this curve in
another parametric representation α̃ = α̃(θ̄), where θ̄ =

∫
κ̄(s̄) d s̄, and we

have new dual Frenet equations as follows:

(6)

 T̃ ′(θ̄)

Ñ ′(θ̄)

B̃ ′(θ̄)

 =

 0 1 0
−1 0 f̄(θ̄)
0 −f̄(θ̄) 0

 T̃ (θ̄)

Ñ (θ̄)

B̃(θ̄)

 ,
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where f̄(θ̄) = τ̄(θ̄)

κ̄(θ̄)
. If we use the first and second equation of the new Frenet

formulae we have

(7)
d Ñ

d θ̄
=

d2 T̃

d θ̄2
= −T̃ + f̄ B̃

and we get the dual unit binormal vector as

(8) B̃(θ̄) =
1

f̄(θ̄)

[
T̃ ′′(θ̄) + T̃ (θ̄)

]
.

Differentiating the equation (8) and using the third equation of equation (6),
we obtain the dual vector differential equation as desired. �

3. Slant Helices and Darboux Helices in Dual Space

In this section, we will give the definitions and characterizations of dual slant
helix and dual Darboux helix.

Definition 3.1. ([11]) Let α̃ : D → D3 be a dual space curve with dual
Frenet frame

{
T̃ (s̄), Ñ (s̄), B̃(s̄)

}
. Then α̃ is called a dual slant helix if the

dual unit principal normal vectors Ñ make a constant dual angle φ̄ with a
fixed dual unit vector d̃ in dual space.

Definition 3.2. Let α̃ : D → D3 be a dual space curve with dual Frenet
frame

{
T̃ (s̄), Ñ (s̄), B̃(s̄)

}
. Then α̃ is called a dual Darboux helix if the

dual Darboux vectors W̃ make a constant dual angle φ̄ with a fixed dual
unit vector d̃ in dual space. Moreover, α̃ is called a dual normalized Darboux
helix if the dual unit Darboux vectors W̃0 make a constant dual angle with
a fixed dual unit vector d̃ in dual space.

After these definitions, we can give the following characterizations:

Theorem 3.1. Let α̃ : D → D3 be a dual curve parameterized by its dual
arc length. The dual curve α̃ is a dual slant helix with constant dual angle
φ̄ such that

〈
Ñ , d̃

〉
= cos φ̄ = n̄ is constant if and only if

(9)
τ̄(s̄)

κ̄(s̄)
= ±

m̄
∫
κ̄(s̄) d s̄√

1− m̄2
(∫
κ̄(s̄) d s̄

)2 ,
holds along the curve, where m̄ =

n̄√
1− n̄2

is a dual constant.
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Proof. Let d̃ be a fixed dual unit vector which makes a constant dual angle
φ̄ = ± arccos(n̄) with the dual unit principal normal vector Ñ , i.e.,

(10)
〈
Ñ , d̃

〉
= cos φ̄ = n̄,

where n̄ ∈ D is a constant. If we differentiate equation (10) with respect to
θ̄ =

∫
κ̄(s̄) d s̄ and use the new dual Frenet equation (6), we get

(11)
〈
−T̃ (θ̄) + f̄(θ̄)B̃(θ̄), d̃

〉
= 0.

Therefore,

(12)
〈
T̃ , d̃

〉
= f̄

〈
B̃ , d̃

〉
.

We can put
〈
B̃ , d̃

〉
= b̄ and write

(13) d̃ = f̄ b̄ T̃ + n̄ Ñ + b̄ B̃ .

Since the dual vector d̃ is a dual unit vector, we get b̄ = ±
√

1−n̄2

1+f̄2
. Hence,

dual unit vector d̃ can be written as

(14) d̃ = ±f̄

√
1− n̄2

1 + f̄2
T̃ + n̄ Ñ ±

√
1− n̄2

1 + f̄2
B̃ .

If we differentiate equation (11) again and use equation (6), we have

(15)
〈
f̄ ′ B̃ − (1 + f̄2)Ñ , d̃

〉
= 0.

Substituting equation (14) into equation (15), we obtain following differential
equation

(16)
f̄ ′(

1 + f̄2
)3/2

= ±m̄,

where m̄ = n̄√
1−n̄2

. Integrating above equation, we get

(17)
f̄√

1 + f̄2
= ±m̄(θ̄ + c̄1).

where c̄1 is a dual integration constant. We can use a parameter change
θ̄ → θ̄− c̄1 to eliminate the integration constant. Then, f̄ can be found from
equation (17) as

(18) f̄
(
θ̄
)

= ± m̄ θ̄√
1− m̄2θ̄2

.

Since τ̄(s̄) = κ̄(s̄)f̄(s̄) and θ̄ =
∫
κ̄(s̄) d s̄, from (18) we obtain desired result.
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Conversely, suppose that

τ̄(s̄)

κ̄(s̄)
= ±

m̄
∫
κ̄(s̄) d s̄√

1− m̄2
(∫
κ̄(s̄) d s̄

)2 ,
holds. The function f̄ can be written as f̄(θ̄) = ± m̄ θ̄√

1− m̄2θ̄2
, where θ̄ =∫

κ̄(s̄) d s̄. Let us consider dual vector

(19) d̃ = n̄

(
θ̄T̃ + Ñ ± 1

m̄

√
1− m̄2θ̄2B̃

)
.

We must show that the dual vector d̃ is a dual constant vector. Differenti-
ating equation (19) and using dual Frenet formulae (6), we get

(20) d̃ ′ = 0

The equation (20) shows that dual vector d̃ is a dual constant vector and〈
Ñ , d̃

〉
= n̄ is constant. This finishes the proof of Theorem 3.1. �

Theorem 3.2. Let α̃ : D → D3 be a dual curve parameterized by its dual
arc length. Then α̃ is a dual slant helix if and only if

(21)
κ̄2

(τ̄2 + κ̄2)3/2

( τ̄
κ̄

)′
,

is a dual constant.

Proof. Since α̃ is a dual slant helix, we have
〈
Ñ , d̃

〉
= cos φ̄ = constant. So,

there exist smooth functions ā1 = ā1(s̄) and ā3 = ā3(s̄) of dual arc length s̄
such that

(22) d̃ = ā1T̃ + cos φ̄Ñ + ā3B̃ .

Since d̃ is a constant dual vector, we get d̃ ′ = 0. Then if we take the
derivative of (22) and use the dual Frenet formulae, we obtain

(23) (ā′1 − κ̄ cos φ̄)T̃ + (ā1κ̄− ā3τ̄)Ñ + (ā′3 + τ̄ cos φ̄)B̃ = 0

where the prime shows the derivative with respect to s̄. Since the dual Frenet
frame

{
T̃ , Ñ , B̃

}
is linearly independent, we have

(24)

 ā′1 − κ̄ cos φ̄ = 0,
ā1κ̄− ā3τ̄ = 0,
ā′3 + τ̄ cos φ̄ = 0.

From the second equation of the system (24) we obtain

(25) ā1 =
( τ̄
κ̄

)
ā3.
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Since d̃ is a constant dual vector,
∥∥∥d̃∥∥∥ is constant. Then (25) gives that

(26)
( τ̄
κ̄

)2

ā2
3 + ā2

3 + cos2 φ̄ = constant

and from (26) we can write

(27)
(( τ̄

κ̄

)2

+ 1

)
ā2

3 = n̄2

where n̄2 is a non-zero dual constant. From (27) we have

(28) ā3 = ± n̄√(
τ̄
κ̄

)2
+ 1

.

By taking derivative of (28) and using the third equation of system (24) we
get

(29)
κ̄2

(τ̄2 + κ̄2)3/2

( τ̄
κ̄

)′
= constant,

which is desired function.
Conversely, let us assume that the function (29) is satisfied. We define

the dual vector

(30) d̃ =
τ̄√

τ̄2 + κ̄2
T̃ + cos φ̄Ñ +

κ̄√
τ̄2 + κ̄2

B̃ ,

where φ̄ is a dual constant angle between dual vectors d̃ and Ñ . If we take
derivative of equation (30) and use dual Frenet formulae (4) and (29), we
can easily see that d̃ ′ = 0, which gives that d̃ = constant. On the other
hand,

〈
Ñ , d̃

〉
= cos φ̄ is constant and which means that the curve α̃ is a

dual slant helix. �

Theorem 3.3. Every dual slant helix is also a dual normalized Darboux
helix with same dual axis.

Proof. Let α̃ be a slant helix in D3. Then from (30) the axis of dual slant
helix is

(31) d̃ =
τ̄√

τ̄2 + κ̄2
T̃ + cos φ̄Ñ +

κ̄√
τ̄2 + κ̄2

B̃ ,

where φ̄ is constant dual angle between the vectors d̃ and Ñ . Considering
unit dual Darboux vector W̃0, equality (31) can be written as follows

(32) d̃ = W̃0 + cos φ̄Ñ ,
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which shows that d̃ lies on the dual plane spanned by W̃0 and Ñ . Since φ̄
is a dual constant, if the dual angle between the dual vectors d̃ and W̃0 is
λ̄, from (32) and equality

〈
d̃ , W̃0

〉
=
∥∥∥d̃∥∥∥ cos λ̄, we have

(33) cos λ̄ =
1√

1 + cos2 φ̄
,

is constant. Then we have
〈
d̃ , W̃0

〉
is constant, i.e, α̃ is also a normalized

Darboux helix in D3 with same dual axis. �

Theorem 3.4. Let α̃ be a dual slant helix with dual Frenet frame
{
T̃ , Ñ , B̃

}
and non-zero dual curvatures κ̄ and τ̄ . The curvatures κ̄ and τ̄ satisfy the
following non-linear equation system,(

τ̄√
τ̄2 + κ̄2

)′
− µ̄κ̄ = 0,

(
κ̄√

τ̄2 + κ̄2

)′
+ µ̄τ̄ = 0.

Proof. Since α̃ is a dual slant helix, the fixed dual unit vector is given by,

(34) d̃ =
τ̄√

τ̄2 + κ̄2
T̃ + cos φ̄Ñ +

κ̄√
τ̄2 + κ̄2

B̃ ,

where κ̄ and τ̄ are dual curvatures of α̃. Taking the derivative in each part
of the equation (34), we get

(35) d̃ ′ =

(
τ̄√

τ̄2 + κ̄2

)′
T̃ +

(
κ̄√

τ̄2 + κ̄2

)′
B̃ + cos φ̄(−κ̄T̃ + τ̄ B̃)

Since the system
{
T̃ , B̃

}
is linearly independent, we have

(36)
(

τ̄√
τ̄2 + κ̄2

)′
− µ̄κ̄ = 0,

(
κ̄√

τ̄2 + κ̄2

)′
+ µ̄τ̄ = 0.

where cos φ̄ = µ̄. �

4. Similar Curves in Dual Space

In this section, we will give the definition of dual similar curves with vari-
able transformation. Then we will present some theorems concerning the
relations between dual Frenet elements of dual similar curves.

Definition 4.1. Let α̃(s̄α) and β̃(s̄β) be two curves in D3 parameterized
by dual arclengths s̄α and s̄β with dual curvatures κ̄α and κ̄β , dual tor-
sions τ̄α and τ̄β and dual Frenet frames

{
T̃α, Ñα, B̃α

}
and

{
T̃β, Ñβ, B̃β

}
,



98 Slant Helices, Darboux Helices and Similar Curves in Dual Space D3

respectively. α̃(s̄α) and β̃(s̄β) are called dual similar curves with variable
transformation λ̄αβ if there exists a variable transformation

(37) s̄α =

∫
λ̄αβ(s̄β) d s̄β

of the dual arclengths such that dual unit tangent vectors are the same for
two dual curves, i.e.,

(38) T̃β(s̄β) = T̃α(s̄α),

for all corresponding values of parameters under the transformation λ̄αβ which
is arbitrary dual function of dual arclength s̄β . It is provided that λ̄αβ λ̄

β
α = 1.

All dual curves satisfying equation (38) are called a family of dual similar
curves with variable transformations.

Theorem 4.1. Let α̃(s̄α) and β̃(s̄β) be two regular curves in D3. α̃(s̄α) and
β̃(s̄β) are similar curves in D3 with variable transformation if and only if
the dual unit principal normal vectors are the same, i.e.,

(39) Ñβ(s̄β) = Ñα(s̄α)

under the particular variable transformation

(40) λ̄βα =
d s̄β
d s̄α

=
κ̄α
κ̄β
.

Proof. Let α̃(s̄α) and β̃(s̄β) be two regular similar curves with variable trans-
formations in D3. If we differentiate the equation (38) with respect to s̄β we
have

(41) κ̄β(s̄β)Ñβ(s̄β) = κ̄α(s̄α)Ñα(s̄α)
d s̄α
d s̄β

.

From the equation (41), we obtain the two equations (39) and (40).
Conversely, let α̃(s̄α) and β̃(s̄β) be two regular curves in D3 satisfying two

equations (39) and (40). Multiplying equation (39) by κβ(s̄β) and integrat-
ing the result with respect to s̄β we get

(42)
∫
κ̄β(s̄β)Ñβ(s̄β) d s̄β =

∫
κ̄β(s̄β)Ñβ(s̄β)

ds̄β
d s̄α

d s̄α.

Using equations (39) and (40), the equation (42) becomes

(43)
∫
κ̄β(s̄β)Ñβ(s̄β) d s̄β =

∫
κ̄α(s̄α)Ñα(s̄α) d s̄α.

If we use the first equation of Frenet formulae (4) and integrate the result,
we obtain the equation (38) which completes proof. �
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Theorem 4.2. Let α̃(s̄α) and β̃(s̄β) be two regular curves in D3. Then
α̃(s̄α) and β̃(s̄β) are similar curves in D3 with variable transformation if
and only if the dual unit binormal vectors are the same, i.e.,

(44) B̃β(s̄β) = B̃α(s̄α)

under the particular transformation

(45) λ̄βα =
d s̄β
d s̄α

=
τ̄α
τ̄β
.

Proof. Let α̃(s̄α) and β̃(s̄β) be two regular similar curves with variable trans-
formation in D3. Then from Definition 4.1 and Theorem 4.1., there exists
a variable transformation of dual arc lengths such that the dual unit tan-
gent vectors and the dual unit principle normal vectors are the same. From
equations (38) and (39) we have

(46) B̃β(s̄β) = T̃β(s̄β)× Ñβ(s̄β) = T̃α(s̄α)× Ñα(s̄α) = B̃α(s̄α).

Conversely, let α̃(s̄α) and β̃(s̄β) be two regular curves in D3 with the same

dual unit binormal vector under the particular transformation λ̄βα =
d s̄β
d s̄α

=

τ̄α
τ̄β

of the dual arclengths. Differentiating the equation (44) with respect to

s̄β we get

(47) −τ̄β(s̄β)Ñβ(s̄β) = −τ̄α(s̄α)Ñα(s̄α)
ds̄α
ds̄β

.

The equation (47) leads to the following two equations

(48) Ñβ(s̄β) = Ñα(s̄α)

and

(49)
d s̄α
d s̄β

=
τ̄β(s̄β)

τ̄α(s̄α)
.

From the hypothesis and equation (48) we have

(50) T̃β(s̄β) = Ñβ(s̄β)× B̃β(s̄β) = Ñα(s̄α)× B̃α(s̄α) = T̃α(s̄α),

which completes the proof. �

Theorem 4.3. Let α̃(s̄α) and β̃(s̄β) be two regular curves in D3. Then
α̃(s̄α) and β̃(s̄β) are dual similar curves with variable transformation if and
only if the ratios of dual torsion to dual curvature are the same for all dual
curves, i.e.,

(51)
τ̄β(s̄β)

κ̄β(s̄β)
=
τ̄α(s̄α)

κ̄α(s̄α)
,
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under the particular variable transformation λ̄βα =
d s̄β
d s̄α

=
κ̄α
κ̄β

keeping equal

dual total curvatures, i.e.,

(52) θ̄β(s̄β) =

∫
κ̄β d s̄β =

∫
κ̄α d s̄α = θ̄α(s̄α),

of the arclengths.

Proof. Let α̃(s̄α) and β̃(s̄β) be two dual similar curves with variable trans-
formations. Then Definition 4.1 and Theorem 4.2 gives that there exists a
variable transformation of arclengths such that the dual unit tangent and
the dual unit binormal vectors are the same. If we differentiate the equations
(38) and (44) with respect to s̄β , we have

(53) κ̄β(s̄β)Ñβ(s̄β) = κ̄α(s̄α)Ñα(s̄α)
d s̄α
d s̄β

,

(54) −τ̄β(s̄β)Ñβ(s̄β) = −τ̄α(s̄α)Ñα(s̄α)
d s̄α
d s̄β

.

From equations (53) and (54), we obtain the following two equations

(55) κ̄β(s̄β) = κ̄α(s̄α)
d s̄α
d s̄β

,

and

(56) τ̄β(s̄β) = τ̄α(s̄α)
d s̄α
d s̄β

.

From equations (55) and (56), we obtain equation (51) under the variable
transformation (52).

Conversely, let α̃(s̄α) and β̃(s̄β) be two dual curves such that the equa-
tion (51) is satisfied under the variable transformation (52) of the dual arc
lengths. From the Theorem 2.1, we know that the tangent vectors T̃α(s̄α)

and T̃β(s̄β) of two curves satisfy vector differential equations as follows:

(57)
(

1

f̄α(θ̄α)
T̃ ′′α(θ̄α)

)′
+

(
1 + f̄2

α(θ̄α)

f̄α(θ̄α)

)
T̃ ′α(θ̄α)− f̄ ′α(θ̄α)

f̄2
α(θ̄α)

T̃α(θ̄α) = 0,

(58)
(

1

f̄β(θ̄β)
T̃ ′′β (θ̄β)

)′
+

(
1 + f̄2

β(θ̄β)

f̄β(θ̄β)

)
T̃ ′β(θ̄β)−

f̄ ′β(θ̄β)

f̄2
β(θ̄β)

T̃β(θ̄β) = 0,

respectively, where

f̄α(θ̄α) =
τ̄α(θ̄α)

κ̄α(θ̄α)
, f̄β(θ̄β) =

τ̄β(θ̄β)

κ̄β(θ̄β)
, θ̄α =

∫
κ̄α(s̄α) d s̄α, θ̄β =

∫
κ̄β(s̄β) d s̄β.
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From the equation (51) we have f̄β(θ̄β) = f̄α(θ̄α) under the variable trans-
formation θ̄β = θ̄α. Under the equation (51) and the transformation (52),
two equations (57) and (58) are the same. So the solutions are the same,
i.e., the dual unit tangent vectors are the same. This means that the dual
curves α̃(s̄α) and β̃(s̄β) are dual similar curves with variable transformation.
This completes the proof. �

After these characterizations we can give the following special cases:

Case 1. If the dual curve α̃ is a general dual helix, i.e., τ̄α
κ̄α

= cot φ̄ = m̄

is a constant and φ̄ is dual constant angle between dual unit tangent vector
and a fixed dual unit vector, then from Theorem 4.3, any dual similar curve
β̃ of this dual helix has the property τ̄β

κ̄β
= m̄. Thus we have the following

corollary:

Corollary 4.1. The family of general dual helices with fixed dual angle φ̄
between a fixed dual unit vector and dual unit tangent vector forms a family
of dual similar curves with variable transformation.

Case 2. Let α̃ and β̃ be two dual slant helices such that the transformation
(52) is satisfied. If we use the relation (9) and (52), it is easy to prove that:

τ̄β
κ̄β

=
m̄ θ̄β√

1− m̄2 θ̄2
β

=
m̄ θ̄α√

1− m̄2 θ̄2
α

=
τ̄α
κ̄α
,

where m̄ = cot φ̄ is a constant and φ̄ is the angle between the dual unit
principal normal vector of α̃ and a fixed dual unit vector. Thus we have the
following corollary:

Corollary 4.2. The family of dual slant helices forms a family of dual sim-
ilar curves with variable transformation.

Case 3. Let α̃ be a dual normalized Darboux helix with κ̄2 + τ̄2 = constant.
Then from Theorem 3.4 we have that α̃ is a dual slant helix. Thus we can
give the following corollary.

Corollary 4.3. The family of dual normalized Darboux helices with κ̄2 +
τ̄2 = constant forms a family of dual similar curves with variable transfor-
mation.
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5. Conclusion

The characterizations of special curves are important and fascinating prob-
lem of differential geometry. These curves are characterized by relationships
between the curvatures and torsions of curves and well-known examples of
such curves are helices and slant helices which have been studied in differ-
ent spaces such as Euclidean space and Minkowski space. But there are no
many studies on these curves in dual space which is a more general space
than the others. In this space, a dual curve consists of two real curves. So,
the characterizations of dual special curves include the characterizations of
real space curves. This paper gives some new characterizations of dual slant
helix. Moreover, the dual normalized Darboux helix and dual similar curves
are introduced and the relationships between these special dual curves are
obtained.
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